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Quantifying landscape characteristics and linking them to ecological processes is one 
of the central goals of landscape ecology. Landscape metrics are a widely used tool for 
the analysis of patch-based, discrete land-cover classes. Existing software to calculate 
landscape metrics has several constraints, such as being limited to a single platform, 
not being open-source or involving a complicated integration into large workflows. 
We present landscapemetrics, an open-source R package that overcomes many 
constraints of existing landscape metric software. The package includes an extensive 
collection of commonly used landscape metrics in a tidy workflow. To facilitate the 
integration into large workflows, landscapemetrics is based on a well-established spatial 
framework in R. This allows pre-processing of land-cover maps or further statistical 
analysis without importing and exporting the data from and to different software 
environments. Additionally, the package provides many utility functions to visualize, 
extract, and sample landscape metrics. Lastly, we provide building-blocks to motivate 
the development and integration of new metrics in the future. We demonstrate 
the usage and advantages of landscapemetrics by analysing the influence of different 
sampling schemes on the estimation of landscape metrics. In so doing, we demonstrate 
the many advantages of the package, especially its easy integration into large workflows. 
These new developments should help with the integration of landscape analysis in 
ecological research, given that ecologists are increasingly using R for the statistical 
analysis, modelling and visualization of spatial data.

Keywords: landscape analysis, landscape indices, landscape mosaic model, 
open-source software, R software, sampling design

Introduction

Understanding how landscape characteristics affect ecological processes and the 
spatial distribution of species and communities is central to ecology (Turner 1989, 
2005, Kupfer 2012). Thereby, one major challenge is how to describe and quantify 
landscape characteristics (Turner 2005, Lausch  et  al. 2015). Typically, landscapes 
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are characterized as discrete patches of different land-cover 
classes (i.e. a landscape mosaic, Forman and Godron 1986, 
Forman 1995, Wiens 1995) which has several benefits. These 
include a straightforward application and communication 
(McGarigal  et  al. 2009, Lausch  et  al. 2015), especially in 
human-dominated landscapes where the distinction between 
different land-cover classes is rather clear-cut (Lausch et al. 
2015). While other landscapes may be better described 
by a gradient-based description of landscape structure 
(McGarigal et al. 2009, Cushman et al. 2010), the landscape-
mosaic model remains the dominant paradigm (Kupfer 2012, 
With 2019).

To quantify the composition (number and abundance) 
and configuration (spatial arrangement) of different land-
cover classes, numerous landscape metrics have been devel-
oped and extensively applied to the analysis of landscape 
structure (Gustafson 1998, 2019, Uuemaa et al. 2013). Such 
landscape metrics are commonly used to facilitate compari-
sons among different landscapes; to quantify how landscapes 
change over time, especially in response to different types of 
disturbances or land-use pressures; and to investigate the rela-
tionship between landscape characteristics and other ecologi-
cal patterns (Uuemaa et al. 2009). Some recent examples of 
these sorts of applications include studies of how landscape 
characteristics of temperate forests differ between years of low 
and high natural disturbance activities (Senf and Seidl 2018), 
how land-use intensity affects agricultural landscapes and 
associated biodiversity (Decaëns et  al. 2018), and how dis-
tributional patterns of birds with different habitat affinities 
are related to landscape heterogeneity (Herrera et al. 2018).

One commonly used software to calculate landscape met-
rics is the stand-alone software FRAGSTATS (McGarigal et al. 
2012). First published in 1995, FRAGSTATS was the first 
software to provide an extensive collection of landscape 
metrics, and subsequently, revolutionized landscape pattern 
analysis (Kupfer 2012, Gustafson 2019). However, ecologists 
are increasingly turning to R (Sciaini et al. 2018), a language 
originally developed for statistical computing (< www.r-
project.org >). Nowadays, R is more and more used for the 
analysis, modelling and visualization of spatial data (Fletcher 
and Fortin 2018). One benefit of R is its active community 
that constantly develops software packages for specific tasks. 
The R package SDMTools (VanDerWal et al. 2019) includes 
a small subset of landscape metrics, but until now there is no 
comprehensive, dedicated R package to calculate landscape 
metrics. Therefore, the development of new software that 
facilitates the application of landscape metrics is still neces-
sary to keep pace with the changing needs and expectations 
of ecologists wanting to perform landscape analysis.

Here, we present landscapemetrics, an extensive collec-
tion of widely used landscape metrics for the analysis of 
discrete land-cover maps, including the most commonly 
used metrics (Cushman  et  al. 2008, Schindler  et  al. 2008, 
Lustig  et  al. 2015), as well as some recent ones (e.g. joint 
entropy, Nowosad and Stepinski 2019). To demonstrate its 
application, we present an analysis of how different sampling 

schemes influence the estimation of landscape metrics using 
neutral landscape models that vary in spatial autocorrelation 
by adopting a virtual ecologist approach (Zurell et al. 2010, 
Supplementary material Appendix 1 Fig. A1).

The R package landscapemetrics

The core of landscapemetrics comprises functions to calculate 
landscape metrics and uses raster data as input. Therefore, the 
package is mainly based on the well-established raster package 
(Hijmans 2019), but the use of next-generation frameworks 
is also possible (stars package, Pebesma 2019).

At present, landscapemetrics primarily includes the so-called 
FRAGSTATS-style metrics (Kupfer 2012, McGarigal  et  al. 
2012), but other types of metrics are planned for future 
updates. The current software version includes metrics on 
all available levels, namely patch-, class- and landscape-
level. Patch-level metrics describe every patch in a landscape 
(a patch being defined as contiguous cells belonging to the 
same land-cover class). Class-level metrics describe all patches 
belonging to a certain land-cover class. Lastly, landscape-level 
metrics describe the characteristics of the entire landscape 
(McGarigal et al. 2012). Additionally, landscape metrics can 
be classified according to the characteristics of the landscape 
they (conceptually) describe (McGarigal et al. 2012, Šímová 
and Gdulová 2012). landscapemetrics includes area and edge 
metrics, shape metrics, core area metrics, aggregation metrics, 
diversity metrics, as well as complexity metrics. For a full list 
of all metrics, see the package documentation (< https://r-
spatialecology.github.io/landscapemetrics >).

Improvements over existing software tools

Though popular, FRAGSTATS has certain drawbacks 
(Table 1). As a stand-alone software, it requires data import 
to the software for integration into large workflows. If the 
resulting metrics are the basis for further analysis, they must 
then be exported to yet another program. Additionally, the 
analysis of several input layers or the use on high-perfor-
mance clusters is rather laborious. Also, FRAGSTATS is not 
open-source software and only available for Windows oper-
ating systems. This can complicate transparency and repro-
ducibility of the analysis workflow, and collaboration among 
researchers using different computing platforms.

Contrastingly, R is open-source and available for most 
common operating systems (including Windows, macOS 
and Linux). The existing R package SDMTools calculates a 
limited number of landscape metrics, and thereby overcomes 
some of the above-mentioned limitations of FRAGSTATS. 
But, as this package was primarily developed for species dis-
tribution modelling rather than landscape analysis, it cannot 
fully replace FRAGSTATS (Table 1). The use of the pack-
age for landscape analysis is rather cumbersome. To calcu-
late patch-level metrics, the data must first be converted to a 
matrix and a loop through all land-cover classes implemented 



1650

(Example 1). Furthermore, SDMTools does not permit a 
sub-selection of metrics and no further parameterization of 
metrics is possible. Additionally, the user must specify the cell 
resolution manually for all area- and distance-related calcula-
tions, introducing a possible error source. Also, the output 
format makes integration of the results into large workflows 
difficult. Lastly, to our knowledge, SDMTools is not actively 
developed anymore.

landscapemetrics provides an extensive collection of 
widely used landscape metrics for discrete land-cover maps, 
including most of the commonly used metrics used in 
landscape analysis (Cushman et al. 2008, Schindler et al. 
2008, Lustig  et  al. 2015), as well as some recent ones 
(e.g. joint entropy, Nowosad and Stepinski 2019). Because 
landscapemetrics is written in the R programming lan-
guage, it operates across operating platforms. Given the 

Table 1. Main characteristics and features of FRAGSTATS, SDMTools and landscapemetrics. The available metric levels are abbreviated: 
p = patch level, c = class level, l = landscape level.

Characteristics FRAGSTATS SDMTools landscapemetrics

open-source software no yes yes
cross-platform compatibility no yes yes
available metric levels p, c, l p, c p, c, l
parametrization of metrics yes no yes
tidy data format no no yes
easy integration into workflows no no yes
utility functions sampling no various
restrictions due to numeric precision yes1 no no

1 FRAGSTATS does not allow a cell resolution <0.005 map units of the input raster.

library(dplyr)
library(landscapemetrics)
library(SDMTools)
library(raster)

#### SDMTools ####
result_patch <- list() # preallocate list
classes <- unique(landscape) # all present classes

# loop through all classes
for(i in seq_along(classes)) {
    landscape_matrix <- as.matrix(landscape) # convert to matrix
    landscape_matrix[landscape_matrix != i] <- 0 # binarize landscape
    landscape_matrix[landscape_matrix == i] <- 1 # binarize landscape
    ccl <- ConnCompLabel(landscape_matrix) # get patches
    result_patch[[i]] <- PatchStat(ccl, cellsize = 1) # patch metrics
}

result_patch <- bind_rows(result_patch, .id = "classID") # combine to one df

result_patch <- filter(result_patch, patchID != 0) # only present classes

area_SDM <- result_patch[, c(1, 2, 7)] # select only area
perim_SDM <- result_patch[, c(1, 2, 9)] # select only perimeter

#### landscapemetrics ####
area_lsm <- lsm_p_area(landscape) # calculate patch area
perim_lsm <- lsm_p_perim(landscape) # calculate patch perimeter

Example 1. Comparison of SDMTools and landscapemetrics workflows to calculate patch area and patch perimeter. SDMTools 
requires a loop through all present land-cover classes and a binarization of the input to 1 for the current class and 0 for all other 
classes. Also, the desired metrics must be filtered from the resulting data frame.
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variety of R packages, this also enables the user to run the 
software easily in parallel or on high-performance clusters. 
To ensure integration into large workflows, landscape-
metrics is based on a well-established spatial framework 
in R (mainly the raster package). This allows pre-process-
ing of data, calculation of metrics, and further analysis 
of the results, all within the same software environment. 
This also facilitates its usage with other spatial objects 
in R (e.g. sp spatial points, Pebesma and Bivand 2005). 
Additionally, the use of raster data has advantages in hav-
ing all required spatial information included and eliminat-
ing possible error sources, such as a mis-specified cell size. 
To simplify integration further, the output of all metric 
functions is tidy (sensu Wickham 2014) and type stable, 
meaning the returning data frame is identically structured 
regardless of the level or metric (Table 2). This facilitates 
reproducible workflows (Sandve  et  al. 2013). The pack-
age is open-source, which allows users to comprehend and 
improve upon existing metrics, as well as to contribute 
new functions. All functions were designed to calculate 
landscape metrics in a straightforward way (Example 
1). Lastly, the package provides several utility functions 
(Table 3) to facilitate visualization, extraction, sampling 
and development of metrics.

Calculation of landscape metrics

The first step of every analysis should be a check if 
the input raster is suitable for landscapemetrics using 
check_landscape(). The function checks if the coor-
dinate reference system is projected, if the cell units are in 
meters, if the classes are decoded as integer values, and if the 

number of different values is reasonable (in other words if dis-
crete land-cover classes are present). In case the input is not or 
only partially suitable, a corresponding warning is produced. 
This means that a calculation of metrics is still possible, but 
some results must be interpreted with caution (e.g. area- and 
distance-related metrics).

To get an overview of all available metrics, landscapemetrics 
provides the function list_lsm(). It is possible to specify 
metrics by name, level, and/or type. Of course, all specifica-
tions can be combined. Also, rather than a data frame, it is 
possible to return a vector with function names. For example, 
the vector format makes it straightforward to get only the 
function names of all patch- and class-level aggregation met-
rics for later use by list_lsm(level = c("patch", 
"class"), type = "aggregation metric", 
simplify = TRUE).

All functions to calculate landscape metrics are 
consistently named in landscapemetrics. Functions to calcu-
late a given metric have the prefix ‘lsm_’ followed by an 
abbreviation for the level (‘p’, ‘c’ or ‘l’ for patch-, class- 
and landscape-level, respectively) and lastly for the met-
ric itself. For example, the class area for each land-cover 
class is calculated simply by lsm_c_ca(). All func-
tions can handle several landscapes as input (either a list of 
RasterLayers or a RasterStack/RasterBrick).

Several metrics, regardless of the level, can easily be com-
bined into one data frame because the resulting output 
is always an identically structured data frame (Table 2). 
Therefore, the results of the desired metrics can be com-
bined using, for example, rbind(lsm_p_area(x), 
lsm_l_ai(x)). Because all output is tidy following 
widely accepted data science standards, further analysis of 

Table 3. Overview of utility functions in the landscapemetrics package.

Area of application Function name Description

Visualization show_patches() Plot patches in the landscape
Visualization show_cores() Plot core areas in the landscape
Visualization show_lsm() Plot landscape filling cells with patch level metric value
Visualization show_correlation() Show correlation between metrics
Sampling sample_lsm() Sample metrics in a buffer around sample points
Sampling extract_lsm() Extract landscape metric of patches enclosing sample points
Sampling window_lsm() Moving window analysis
Building block get_adjacencies() Get class cell adjacencies
Building block get_boundaries() Get boundary cells of patches
Building block get_circumscribingcircle() Get diameter of the smallest circumscribing circle around patches
Building block get_nearestneighbour() Get minimum Euclidean distance between classes
Building block get_patches() Patch delineation
Various check_landscape() Check if input fulfils package requirements
Various list_lsm() List all available metrics
Various spatialize_lsm() Assign patch metric to each cell

Table 2. Structure of the output table used for all metrics in landscapemetrics. The output is type stable, which simplifies integration into 
larger workflows.

Layer <integer> Level <character> Class <integer> ID <integer> Metric <character> Value <double>
ID of landscape Level of metric ID of class; NA for 

landscape level
ID of patch; NA for class 

and landscape level
Abbreviation of metric Value of metric
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the resulting data frame is possible without laborious data 
import/export or formatting (see Use case).

Many functions provide additional parametrization, 
such as the edge depth or the cell neighbourhood rule 
for patch delineation. For example, to change the patch 
delineation rule for the patch area, only the argument 
directions must be changed from its default using 
the ‘queen’s case’ (eight neighbouring cells) to the ‘rook’s 
case’ (four neighbouring cells), i.e. lsm_p_area(x, 
directions = 4). Of course, all arguments are consis-
tently named across metrics.

The calculate_lsm() wrapper can be used to cal-
culate several metrics simultaneously. Similar to list_
lsm(), this wrapper allows specifying a subset of metrics 
using the name, level, and/or type, such as calculate_
lsm(x, level = “landscape”, type = “diver-
sity metric”). Alternatively, a vector (e.g. previously 
created using list_lsm()) with function names can be 
provided as what-argument. The returning data frame is 
identical to the output of all single metric functions.

Utility functions

An additional advantage of landscapemetrics over existing 
software tools for landscape analysis lies in its utility func-
tions (Table 3). These functions are designed to facilitate the 
application, visualization, extraction, sampling and develop-
ment of landscape metrics.

Visualization functions, which help to understand and 
communicate metrics, start with the prefix ‘show_’ followed 
by the subject to visualize. It is possible to include either all 
classes in one plot (class = “global”), all classes but 
each plotted separately (class = “all”) or just selected 
classes (class = c(1, 3)). Patches in a landscape can be 
visualized by show_patches() (Fig. 1B), or to visual-
ize only the core area, there is show_cores() (Fig. 1C). 
Additionally, patches can be filled with the value of any patch 
level metric, such as the patch area using show_lsm(x, 
what = “lsm_p_area”). It is also possible the get the 
result as a RasterLayer, using spatialize_lsm(). 

In the returning RasterLayer, each cell has the value of the 
corresponding patch for any chosen metric. Correlations 
between metrics can be problematic (Cushman et al. 2008, 
Schindler et al. 2008, Nowosad and Stepinski 2018b) and the 
selection of mainly uncorrelated metrics can be a challenge. 
Providing a data frame with metric results, show_corre-
lations() returns a correlation matrix plot.

There are several functions to sample landscape met-
rics. Sample locations can be provided either as a matrix 
including x- and y-coordinates or as sp-objects and for all 
sampling functions, the metrics can be specified similar to 
list_lsm(). The function extract_lsm() returns 
the patch-level metric values of each patch in which sample 
points are located. To calculate metrics in a buffer around 
sample points, sample_lsm() can be used, allowing to 
specify the shape (circle, square or rectangle) and the area 
of buffers around sample points, and then calculates the 
specified metrics. Landscape metrics are known to be scale 
dependent (Lausch and Herzog 2002, Wu 2004, Lustig et al. 
2015) and using a moving window can be an approach to 
deal with this (Su et al. 2011). The moving window assigns 
to each focal cell in the landscape the metric value of its 
local neighbourhood specified by a neighbourhood matrix 
(McGarigal  et  al. 2012). The resulting raster describes the 
landscape in regard to the local variability of the chosen met-
ric (Hagen-Zanker 2016). Within landscapemetrics, a moving 
window approach can be applied by using window_lsm(). 
The local neighborhood can be specified using, for example, 
window <- matrix(1, nrow = 5, ncol = 5), 
followed by window_lsm(x, window = window, 
what = c("lsm_l_pr", "lsm_l_joinent")).

Lastly, landscapemetrics provides several building-blocks 
to develop and contribute new metrics. These functions all 
start with the prefix ‘get_’ and are mainly computationally 
fast C/C++ implementations of common raster procedures. 
Of these, get_patches() is the most fundamental, as it 
returns all connected cells as patches and is used in most met-
rics. Another useful function is get_adjacencies(), 
which returns the adjacency matrix of all cells, and is easier 
to use, faster and more memory efficient than its equivalent 

(a) (b) (c)Landscape Patches Core areas

Figure 1. Visualization of an example landscape (a) using the utility functions show_patches() (b) and show_cores() (c) for a 
selected class.
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in the raster package (Example 2). Finally, get_nearest-
neigbhour() returns the minimum Euclidean distance 
between patches of the same class, and get_circum-
scribingcircle() returns the diameter of the smallest 
circumscribing circle around each patch.

Use case

Here, we aim to demonstrate some of the advantages of the 
package, especially its easy integration into large workflows. 
To this end, we apply landscapemetrics to analyse the effect of 
different sampling schemes on the estimation of landscape 
metrics. All code to reproduce the use case can be found at 
< https://zenodo.org/record/2597976 >.

Although the collection, processing and analysis of spatial 
data across landscape and regional scales has become com-
monplace, ecologists still need to subsample data from a 
larger landscape. Possible reasons are atmospheric conditions, 
logistical or budget constraints, or the use of unmanned 
aerial vehicles, resulting in high-resolution imagery but with 
limited extent (Getzin et al. 2012). Even though landscape 
metrics are known to be sensitive to various scaling issues 

(Lausch and Herzog 2002, Wu 2004, Lustig et al. 2015), the 
quality of the sample mean as an estimator has only been 
investigated for a subset of metrics and specific sampling 
schemes (but see Ramezani et al. 2010, Ramezani and Holm 
2011, Hassett et al. 2012).

We used the virtual ecologist approach (Zurell et al. 2010, 
Supplementary material Appendix 1 Fig. A1) which can be 
summarised in four major steps: 1) a virtual ecological sim-
ulation model of an ecosystem (or landscape, in this case), 
2) a virtual sampling process, sampling data from the vir-
tual ecosystem or landscape, 3) analyses of the sampled data 
and 4) an evaluation of the results against the true value for 
the full virtual ecosystem or landscape (Zurell et al. 2010). 
Following this approach, we first simulated neutral land-
scapes (500 × 500 cells) containing five classes (relative pro-
portion of 20% each) with either low, medium or high spatial 
autocorrelation, respectively (NLMR package, Sciaini  et  al. 
2018). For each landscape, we calculated all available land-
scape-level metrics that were invariant to the absolute plot 
area (Supplementary material Appendix 1 Table A1). Within 
each landscape, we sampled data using all 54 possible com-
binations of plot size, landscape area sampled, plot shape 

library(landscapemetrics)
library(dplyr)
library(bench)

#### raster ####
adj_raster <- function(x) {
    # get cell ids of neighboring cells
    adjacencies <- raster::adjacent(x, cells = 1:raster::ncell(x))
    # table of values of neighboring cells
    table(x[adjacencies[, 1]], x[adjacencies[, 2]])
}

adj_raster(landscape)

#### landscapemetrics ####
get_adjacencies(landscape)

#### benchmark of both options ####
mark(adj_raster(landscape), 
     get_adjacencies(landscape), 
     iterations = 10000, check = FALSE)

# A tibble: 2 x 3
  expression              mean      mem_alloc
  <chr>               <bch:tm>      <bch:byt>
1 adj_raster(landscape)      8900 µs        1470 KB
2 get_adjacencies(landscape)    562 µs           6 KB

Example 2. Comparison between raster and landscapemetrics to get the cell adjacency matrix of a raster. Not only is the 
landscapemetrics solution much easier, but it is also computationally faster and more memory efficient. The benchmark was 
done on Windows 10 (32 GB RAM, Intel i7 core, 3.4 GHz), using R ver. 3.5.1 and 10 000 iterations of each function.
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and spatial arrangement (Table 4). We used the sample 
mean to estimate the landscape properties for the whole 
landscapes and evaluated the estimated metrics against the 
true metrics using the root–mean–square error (RMSE, 
Hyndman and Koehler 2006) normalized by the mean  

as nRMSE
x

n
x x= ( )

−
+ −

Var
1

2( ) /µ .

The metrics ‘area_cv’, ‘area_sd’, ‘core_cv’, ‘core_sd’, ‘lsi’ 
and ‘mesh’ were estimated with a nRMSE >125% for all 
sampling schemes and spatial autocorrelations, and were thus 
removed from further analyses. In general, we found that 
the accuracy and precision of the estimator decreased with 
increasing spatial autocorrelation (Fig. 2). Across all metrics 
and spatial autocorrelations, the median nRMSE decreased 
slightly as the area sampled increased (Fig. 2a). The median 

Table 4. Components of the sampling scheme. All 54 possible unique combinations were used for the analyses.
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Figure 2. Normalized root–mean–square error (nRMSE) for different sampling schemes. The nRMSE is summarized for all metrics and 
sampling schemes components not present on the corresponding x-axis. For (a) the sampled landscape is increased, for (b) different 
sampling plot shapes and for (c) different spatial arrangements of sampling plots are used. The solid lines represent the median, the boxes 
the middle 50% of the data and the whiskers include 1–99% of the data. The y-scales differ among panels to highlight differences between 
the sampling schemes.
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nRMSE across all metrics and spatial autocorrelations was 
similar among plot shapes, but the extreme deviations slightly 
increased for square and circular plots with increasing spatial 
autocorrelation (Fig. 2b). Finally, the spatial arrangement of 
plots had no clear influence on accuracy and precision of the 
estimator (Fig. 2c).

We found that most landscape metrics were able to 
provide a fairly accurate and precise assessment of land-
scape structure for landscapes with a low spatial autocor-
relation, likely because individual plots captured more of 
the inherent spatial heterogeneity present within the over-
all landscape (Wiens 1989, Hassett et al. 2012). Accuracy 
and precision decreased with increasing spatial autocor-
relation, likely due to increasing between-plot variability 
(Hassett  et  al. 2012). Accuracy and precision of the esti-
mator increased as the area sampled within the landscape 
increased because estimators increasingly converged on the 
true landscape value. Although this has been found by oth-
ers (Ramezani and Holm 2011), the influence was smaller 
than expected, perhaps because the same region of the land-
scape might have been resampled due to overlapping sample 
plots. There were no clear differences between the three plot 
shapes investigated (rectangular, circular, square). When 
spatial autocorrelation was low, the ‘salt and pepper’ proper-
ties of the landscapes were adequately captured by all plot 
shapes. Contrastingly, with increasing spatial autocorrela-
tion, rectangular plots provided a slightly more accurate and 
precise estimation of landscape properties than did circu-
lar and square plots. Most likely, rectangular plots captured 
more spatial heterogeneity. A similar effect can be observed 
for species richness counts, where more species can be found 
in elongated plots (Güler et al. 2016). Both regular and ran-
dom arrangements of sampling plots were able to capture 
landscape properties similarly well. This is not surprising 
for landscapes with a low spatial autocorrelation, because 
the finer scale of heterogeneity means all sampling distri-
butions should perform similarly. However, in landscapes 
with high spatial autocorrelation, a regular sampling array 
should better capture landscape structure than a random 
sampling scheme, given the coarser scale of heterogeneity 
(Ramezani et al. 2010).

Discussion

The use case demonstrated many advantages of the 
landscapemetrics package, especially the easy integration into 
large analysis workflows without the need of importing/
exporting to or from different software environments. This 
also facilitates usage in combination with other spatial R 
packages, such as raster, sp or NLMR.

Although the aimless calculation of landscape metrics is 
not recommended (Gustafson 2019), in cases where many 
metrics need to be calculated, landscapemetrics can calculate 
these with ease either in parallel or on high-performance 
clusters. This lessens one disadvantage of landscapemetrics 

being computationally slower for the calculation of  
some landscape metrics compared to FRAGSTATS and 
SDMTools. The use of landscapemetrics in parallel comput-
ing or on high-performance clusters can also be a huge 
advantage for studies where only a small number of metrics 
need to be calculated, but for many landscapes, as in the 
use case demonstrated here with its large factorial design 
(see Use case).

The type-stable and tidy output also allows users to 
process results without much data formatting, using data 
manipulation packages such as dplyr (Wickham et al. 2019), 
and furthermore, to produce figures using plotting packages 
such as ggplot2 (Wickham 2016).

Finally, being open-source and hosted on GitHub 
improves the transparency of the package and users can easily 
file bug reports to ensure a rapid fix. This can also lead to the 
development of new functions when requested by users on 
GitHub, as evidenced by several new functions that have been 
implemented since the first release of the landscapemetrics 
package.

Summary

landscapemetrics is the first R package that allows calculation 
of most of the commonly employed landscape metrics 
found in the ecological literature (Cushman  et  al. 2008, 
Schindler  et  al. 2008, Lustig  et  al. 2015). Along with the 
package, a dedicated website introduces the basic concepts 
and usage of landscapemetrics (< https://r-spatialecology.
github.io/landscapemetrics/ >).

Many characteristics, such as including a large set of 
landscape metrics, working across platforms, being open-
source, and the ability to analyse a comprehensive variety 
of spatial data within larger workflows, are all advantages 
of the package. The included utility functions that permit 
the visualization, extraction, sampling and development of 
metrics, provide additional benefits over existing software. 
We hope this helps integrate landscapemetrics more easily into 
larger workflows, enhances transparency and reproducibility, 
and simplifies landscape analyses in ecological investigations.

Data deposition

Data are available from the Zenodo Digital Repository: 
< https://zenodo.org/record/2597976 > (Hesselbarth  et  al. 
2019).

Software availability

landscapemetrics is available on the comprehensive R 
archive network (CRAN): < https://CRAN.R-project.org/
package=landscapemetrics > and is also hosted on GitHub: 
< https://www.github.com/r-spatialecology/landscapemet-
rics >. landscapemetrics is distributed under GNU Public 
License ver. 3 (GPLv3).
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To cite landscapemetrics or acknowledge its use, cite this 
software note as follows, substituting the version of the 
application that you used for ‘version 0’: 
Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., 

Nowosad, J. 2019. landscapemetrics: an open-source R tool to 
calculate landscape metrics. – Ecography 42: 000–000 (ver. 0).
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