
1 23

Landscape Ecology
 
ISSN 0921-2973
Volume 26
Number 8
 
Landscape Ecol (2011) 26:1125-1136
DOI 10.1007/s10980-011-9631-1

Historical processes and landscape
context influence genetic structure in
peripheral populations of the collared
lizard (Crotaphytus collaris)

Emilie Blevins, Samantha M. Wisely &
Kimberly A. With



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V.. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



RESEARCH ARTICLE

Historical processes and landscape context influence genetic
structure in peripheral populations of the collared lizard
(Crotaphytus collaris)

Emilie Blevins • Samantha M. Wisely •

Kimberly A. With

Received: 8 June 2010 / Accepted: 29 June 2011 / Published online: 19 July 2011

� Springer Science+Business Media B.V. 2011

Abstract Populations at the periphery of a species’

range often show reduced genetic variability within

populations and increased genetic divergence among

populations compared to those at the core, but the

mechanisms that give rise to this core-periphery

pattern in genetic structure can be multifaceted.

Peripheral population characteristics may be a product

of historical processes, such as founder effects or

population expansion, or due to the contemporary

influence of landscape context on gene flow. We

sampled collared lizards (Crotaphytus collaris) at four

locations within the northern Flint Hills of Kansas,

which is at the northern periphery of their range, to

determine the genetic variability and extent of genetic

divergence among populations for ten microsatellite

loci (n = 229). We found low genetic variability

(average allelic richness = 3.37 ± 0.23 SE; average

heterozygosity = 0.54 ± 0.05 SE) and moderate pop-

ulation divergence (average FST = 0.08 ± 0.01 SE)

among our sample sites relative to estimates reported in

the literature at the core of the species’ range in Texas.

We also identified differences in dispersal rates among

sampling locations. Gene flow within the Flint Hills

was thus greater than for other peripheral populations

of collared lizards, such as the Missouri glade system

where most of the mesic grasslands have been

converted to forest since the last glacial retreat, which

appears to have greatly impeded gene flow among

populations. Our findings signify the importance of

considering landscape context when evaluating core-

peripheral trends in genetic diversity and population

structure.

Keywords Microsatellites � Flint Hills � Tallgrass

prairie � Collared lizard

Introduction

Species are often less abundant and more patchily

distributed at the periphery of their range than at the

core, presumably due to a decline in the quantity and

quality of suitable habitat relative to the core of the

species’ distribution (Whittaker 1956; Hengeveld and

Haeck 1982; Brown 1984). Because peripheral pop-

ulations experience more extreme conditions than

populations at the core, population dynamics can also

differ between the core and periphery of the range
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(Brown 1984; Brown et al. 1995; but see Sagarin and

Gaines 2002; Murphy et al. 2006). Small, isolated

populations at the periphery are also expected to

maintain lower levels of gene flow, to have reduced

genetic diversity, and to have higher genetic diver-

gence than populations at the core of a species’ range

as a result of drift, selection, and founder effects

(Bush 1975; Nei et al. 1975; Lesica and Allendorf

1995; Ibrahim et al. 1996; Eckert et al. 2008;

Ramakrishnan et al. 2010).

A population’s location at the core vs. the periphery

of the range is unlikely to fully account for population

genetic structure, however. Landscape structure can

have a major effect on genetic diversity and gene flow

(Storfer et al. 2007). Factors such as recent or

historical habitat fragmentation or the presence of

barriers to dispersal can limit gene flow among local

populations and increase population differentiation

(Templeton et al. 1990; Zamudio et al. 1997; Cegelski

et al. 2003; Keyghobadi et al. 2005; Spear et al. 2005).

Species relying on patchy habitat may be especially

influenced by properties of the surrounding landscape

in which the habitat patch is located, and this may be

reflected in local population genetic structure (Berry

et al. 2005; Johansson et al. 2005). Thus, differences in

genetic structure among populations may be depen-

dent on both broad-scale factors, such as the location

of a population within the species’ range, and on local

factors, such as the landscape or patch context.

Identifying the consequences of both broad-scale and

local-scale factors may increase understanding of their

interactive effect on the genetic structure of popula-

tions (Storfer et al. 2010).

The Collared Lizard (Crotaphytus collaris) is well

suited for studies of broad- and local-scale factors on

genetic structure. The broad distribution of this

species across its range permits comparisons of

population genetic structure between core and periph-

eral populations. The species’ distribution extends

throughout North America, from northern Mexico to

northern Kansas and from Arizona east to Missouri

(McGuire 1996). Populations within the range are

subject to considerable variation in climate, rock

habitat, and landscape context (the surrounding

habitat or land use), all of which may affect the

abundance and distribution of collared lizards at a

local scale (Fitch 1956; Templeton et al. 2001;

McGuire et al. 2007; Blevins and With 2011).

Collared lizard populations have been examined

intensively at the northeastern edge of their range in

the Missouri Ozarks, where recent (1950s to the

mid-1990s) habitat fragmentation has likely con-

tributed to declining populations, a reduction in

body size, decreased seasonal activity, and a

reduced breeding season relative to central popula-

tions (Sexton et al. 1992). In addition, Hutchison

(2003) compared central populations of collared

lizards in Texas to peripheral Missouri populations

and concluded that Missouri populations appear to

represent ‘‘evolutionary dead ends,’’ given their

dramatically reduced genetic variability as well as

their high risk of extinction. Although Hutchison

and Templeton (1999) examined genetic diversity in

collared lizard populations across their range

(including Kansas), they did not examine how

characteristics of the landscape might influence

genetic structure, particularly at a more local

scale; a lack of sampling sites \40 km apart in

Kansas precluded their ability to quantify local

population genetic structure at a landscape, rather

than regional, scale.

Our aim in this study was to examine the genetic

diversity and genetic population structure of collared

lizards from multiple sampling locations (\40 km

apart) in the northern Flint Hills of Kansas, a region

that contains the largest contiguous tallgrass prairie

landscape remaining in North America. We analyzed

the genetic structure of four collared lizard popula-

tions and evaluated our results within the context of

core vs. peripheral populations. We hypothesized that

collared lizard population genetics in the northern

Flint Hills region should exhibit decreased genetic

diversity within populations relative to populations at

the core of the species’ range, reflecting the periph-

eral nature of such populations. Additionally, we

hypothesized that peripheral populations in the Flint

Hills would exhibit low divergence among popula-

tions relative to populations at the core and even

those along the eastern periphery of their range,

assuming that the predominantly tallgrass matrix of

this landscape (i.e., the landscape context) is more

conducive to lizard dispersal. We consider the

potential for regional differences in the genetic

structure and diversity of peripheral populations

within different parts of the range, particularly given

the regional differences in landscape context.

1126 Landscape Ecol (2011) 26:1125–1136

123

Author's personal copy



Methods

Study sites

Our study populations of collared lizards were

located in the northern Flint Hills of Kansas. Collared

lizards have experienced multiple range expansions

and contractions over the last hundred thousand years

and have expanded into their current distribution in

northern Kansas only within the last 7,000 years

(Hutchison and Templeton 1999; Hutchison et al.

1999; McGuire et al. 2007); we therefore assumed

that any observed genetic diversity or local popula-

tion genetic structure is a result of processes occur-

ring since invasion. We collected DNA from lizards

(n = 229) at four locations (pair-wise distances

between sites ranged from 10 to 35 km) to examine

patterns of local genetic structure. The four locations

were: the Konza Prairie Biological Station (Konza

Prairie) in Riley Co.; the Fort Riley Military Reser-

vation (Fort Riley) in Riley Co.; Milford Dam in

Geary Co.; and Tuttle Creek Dam in Riley/Pottawat-

omie Cos. (Fig. 1). These sites were chosen because

of their close proximity to one another and because

each was known to provide suitable habitat that

supported populations of collared lizards. Because

our samples were collected at the periphery of the

collared lizard range, where lizards are only patchily

distributed within and among sites, our sampling was

necessarily constrained to those locations where

collared lizards occurred.

Konza Prairie is a 3,487-ha tallgrass prairie site

managed by Kansas State University’s Division of

Biology. Rock habitat at this site occurs as limestone

ledges outcropping along hillsides managed under

different bison or cattle grazing and burning regimes

(Blevins and With 2011). Konza Prairie is separated

from our other sampling sites by the Kansas River,

Fort Riley, and the cities of Manhattan and Junction

City. Fort Riley is an active military site with over

28,000 ha of tallgrass prairie and gallery forest.

Lizards were sampled at several locations across the

Fig. 1 The Collared

lizard’s (Crotaphytus
collaris) range extends

broadly through the mid-

and southwestern United

States. Sampling locations

for this study (inset) occur

along the northern

periphery of the range in the

Flint Hills, Kansas (dark
gray, state map). Sample

site locations are indicated

by stars. Inset colors

indicate land cover (white
prairie or agriculture, light
gray urban, dark gray
forest, black water)
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site. Milford and Tuttle Creek Dams are managed by

the U. S. Army Corps of Engineers. Construction

began at Milford Dam in 1962 and at Tuttle Creek

Dam in 1952. Although some natural rock ledges

occur at both sites, lizards were sampled at riprap

along the eastern side of Milford dam (*2 km in

length) and within the spillway and at riprap along

the eastern lake edge at Tuttle Creek Dam. Upland

habitat mainly separates Milford Dam from Fort

Riley, while Tuttle Creek Dam is separated from Fort

Riley and Milford Dam by Tuttle Creek Lake and the

city of Manhattan.

At Konza Prairie, we collected the lizards from

which we obtained our DNA samples (n = 229

individuals) during repeated surveys of limestone

outcrops within 16 watersheds that contained collared

lizards during May–August in 2008 and 2009 (Blev-

ins and With 2011). We captured lizards by hand

(noosing), and recorded the individual lizard’s loca-

tion (UTM coordinates; accuracy \ 5 m) using a

handheld GPS unit (Garmin). We also recorded sex

(adults are sexually dimorphic, with males being

more brightly colored and 10–15 mm larger than

females at maturity; Fitch 1956; Yedlin and Ferguson

1973), and age based on size classes (juveniles

\ 80 mm; Sexton et al. 1992) when possible. Sam-

ples from Fort Riley, Milford Dam, and Tuttle Creek

Dam were obtained opportunistically and were col-

lected during surveys of lizards at rock habitat. When

possible, capture locations were georeferenced, and

both sex and age were determined. Tail tips (up to

1 cm) for DNA extraction were clipped from each

lizard and stored in tubes containing DryRite for

dehydration (IACUC protocol #2297). Four samples

from Konza Prairie came from frozen tissue of lizards

believed to have died of natural causes. The majority

of our samples (77%) came from collared lizards

located at Konza Prairie (adults, n = 113; juveniles,

n = 64), and the remainder from Fort Riley (adults,

n = 14; juveniles, n = 0), Milford Dam (adults, n =

14; juveniles, n = 3), and Tuttle Creek Dam (adults,

n = 20; juveniles, n = 1).

Molecular methods

We used polymorphic microsatellite markers to

examine genetic diversity and population differenti-

ation since the most recent range expansion because

microsatellites provide relatively contemporary

estimates of genetic diversity and differentiation

(Selkoe and Toonen 2006). We used 10 previously

published microsatellite primers specific to collared

lizards: Orig6, Orig7, Orig11, Orig21, Orig24,

Orig25, Orig26, Enr3, Enr48, and N5 (Hutchison

et al. 2004). Loci were motifs of 2–4 nucleotide

repeats with a minimum of 6 consecutive repeats. We

isolated DNA from tail tips (\0.5 cm) by first

immersing tail tissue in liquid nitrogen and then

crushing it using a mortar and pestle. We used

standard proteinase K–phenol–chloroform extraction

methods (Sambrook et al. 1989) and amplified DNA

using polymerase chain reaction (PCR) using mod-

ified specifications from Hutchison et al. (2004).

Product was visualized using a 3730 DNA Analyzer

(Applied Biosystems) and genotypes were manually

scored using GeneMarker version 1.8 (Softgenetics).

Samples that failed to amplify or were ambiguous

were repeated, either by PCR or DNA extraction.

Statistical methods

Because genotyping errors have the potential to bias

final conclusions (Taberlet et al. 1996; Bonin et al.

2004), we ran samples more than once and subse-

quently calculated the average per locus allelic dropout

(ADO) rate (Broquet and Petit 2004). To ensure the

quality of our results, we checked our data set for errors

in genotyping caused by null alleles, stuttering, and

large allele dropout using the software MICRO-

CHECKER version 2.2.3 (Van Oosterhout et al.

2004). For each sampling location, we then conducted

standard testing for departure from Hardy–Weinberg

equilibrium, calculating FIS according to Weir and

Cockerham (1984), and for genotypic linkage disequi-

librium for each locus pair using Fisher’s method

(Markov chain with parameters set to default values)

within GENEPOP on the web (http://genepop.

curtin.edu.au/; Raymond and Rousset 1995).

To test our hypothesis that genetic diversity is

lower in peripheral populations relative to popula-

tions at the core of the range, we calculated several

diversity measures reported in the literature (Hutch-

ison 2003) for comparison. We first calculated allelic

richness using a rarefaction method accounting for

differences in sample size implemented in F-STAT

(Goudet 1995). We also determined the effective

number of alleles (ne) according to the method of

Kimura and Crow (1964), where ne = 1/[R(xi)
2].
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Observed and expected heterozygosity were calcu-

lated using GENEPOP, and relatedness (r) of indi-

viduals within each sampling location was

determined using maximum likelihood estimation

implemented in the software ML-RELATE (Kali-

nowski et al. 2006).

Reduced genetic diversity might be the result of a

recent (within the last few dozen generations; Luikart

et al. 1998) population bottleneck (Nei et al. 1975),

independent of the location of a population within a

species’ range (core vs. periphery). To verify that any

reduction in genetic diversity measures (other than

observed heterozygosity) we detected relative to core

populations was not the result of a recent population

bottleneck, we determined whether samples exhibited

heterozygote excess relative to allelic richness (Corn-

uet and Luikart 1996). To calculate heterozygote

excess, we used the two-phase mutation (TPM)

model available in the software BOTTLENECK

version 1.2.02 (Cornuet and Luikart 1996) and

assessed significance using a one-tailed Wilcoxon

test. Additionally, we explicitly tested for evidence of

population expansion by analyzing the distribution of

allele lengths using both a within-locus and an

interlocus test (Reich and Goldstein 1998; Reich

et al. 1999) conducted using an Excel macro (Kgtests;

Bilgin 2007).

To test our hypothesis that collared lizard popu-

lations should exhibit relatively low interpopulation

divergence in the Flint Hills region, we conducted

several analyses to identify the amount of divergence

among our sample populations for comparison with

values reported in the literature for populations in

other regions. We first measured FST (Wright 1951;

significance testing implemented in F-STAT) and

calculated isolation by distance (IBD; Wright 1943),

comparing pairwise genetic distance (FST/1 - FST)

with log-geographic (Euclidean) distance matrices.

We tested for significance of IBD by conducting

1,000 permutations using Mantel’s test (Mantel 1967)

in GENEPOP. We also conducted an analysis of

molecular variance (AMOVA; Excoffier et al. 1992)

to identify whether the majority of genetic variation

was partitioned within or among populations.

Additionally, because we hypothesized that the

tallgrass matrix of the Flint Hills landscape may be

more conducive to gene flow than the landscape

context of some other peripheral populations (e.g.,

Missouri glade populations), we used individual-

based tests such as principal coordinates analysis

(GENALEX version 6.2; Peakall and Smouse 2006)

and Bayesian clustering (Pritchard et al. 2000) to

identify whether sampled individuals could be defin-

itively assigned to populations based on their mul-

tilocus genotypes. Bayesian clustering (implemented

in program STRUCTURE version 2.1.3; Pritchard

et al. 2000) was conducted using the admixture

model, with K (the number of clusters) ranging from

one to four (for each of our sample sites). We

performed 30 independent runs with an initial burn-in

of 100,000 followed by 1,000,000 iterations. The

number of populations considered as the best fit to

our data set was determined by the K value with the

highest average log probability [Pr(XK)] over the

thirty runs and by examination of bar plots for

predicted ancestry of samples.

Since we expect that populations in the Flint Hills

will have higher levels of gene flow relative to

peripheral populations in other landscape contexts,

we also attempted to quantify gene flow. We

calculated pairwise past migration rates (mi) and

H = 4 Nl using the coalescent approach available in

program MIGRATE-N (Beerli and Felsenstein 2001).

We first used FST values to calculate mi and H using

the Brownian motion method. Model-estimated val-

ues were used as starting values for three additional

runs to obtain reliable parameter estimates. Parameter

estimates were determined using the full migration

model and default values for search parameters. We

used maximum likelihood estimation, and results for

the final three models were equivalent.

Because samples from Konza Prairie were indi-

vidually georeferenced, we were also able to calcu-

late dispersal occurring at the finest scale, along

outcrops within a sampling location, and consider

how differences in landscape context might differen-

tially affect dispersal at different locations within the

collared lizard range. We performed global spatial

autocorrelation analyses on samples and calculated

pairwise geographic and genetic distance matrices

among individuals. We then generated the autocor-

relation coefficient (r) using GENALEX. Statistical

significance was assessed by generating 999 random

permutations and by performing 1,000 bootstrap

trials to determine the 95% confidence interval for

each permutation. The selection of distance classes

(30, 60, 100, 300, and 1,000 m) was based on

observed movements of 44 uniquely marked lizards
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during this study (total number of re-sightings = 50;

Fig. 2) and on dispersal distances reported in the

literature (Hranitz and Baird 2000).

Results

Although we documented a high rate of ADO (8%), we

conducted replicate genotyping when possible (sam-

ples were re-run on average 1.8 times ± 0.04 SE) to

minimize the influence of ADO on the results. We

identified two loci, Orig11 and N5, as monomorphic

and excluded them from all further analyses except

tests for recent population expansion, which require

inclusion of such loci (Reich et al. 1999). We found

evidence for the presence of a null allele, which is

distinguishable from biological causes for Hardy–

Weinberg disequilibrium such as the Wahlund effect

(Van Oosterhout et al. 2004), at a single locus (Orig7;

frequency in sampling locations = 0.23–0.44, aver-

age = 0.36 ± 0.05 SE). After removal of this locus,

all sampling locations were found to be in Hardy–

Weinberg equilibrium. We therefore calculated and

applied a correction to that locus using the Van

Oosterhout method available in the software MICRO-

CHECKER for our population-level analyses. The

software ML-RELATE provides a correction for the

presence of null alleles, but for all other analyses

requiring genotypic data, we either compared results

with or without the inclusion of this locus or simply

excluded it, depending upon the underlying assump-

tions of the analyses. The test for linkage disequilib-

rium indicated that two loci, Orig24 and Orig25, were

significantly linked in one of our four populations

(Konza Prairie). Hutchison (2003) also found evidence

for linkage disequilibrium at Orig24 and Orig25 (they

are indeed located on the same chromosome; Hutch-

ison et al. 2004), but in only one population of 42

sampled, and concluded these loci were evolving

independently. Thus, we also retained these loci in our

analyses.

Measures of genetic diversity were similar for

Konza Prairie, Fort Riley, and Milford Dam, while

Tuttle Creek Dam demonstrated lower estimates of

genetic diversity and higher inbreeding and related-

ness estimates (Table 1). Because contemporary

disturbances at Tuttle Creek Dam, including a rock-

scouring flood event that occurred in 1993, may have

decreased the genetic diversity of this site relative to

our other three sites, we grouped the Konza Prairie,

Fort Riley, and Milford Dam sampling locations

together and compared them to results for Tuttle

Creek Dam. We used a two-sample t-test (data

normally distributed: HO, HE, and FIS) and a

nonparametric two-sample Kolmogorov–Smirnov

test (data non-normally distributed: allelic richness,

effective number of alleles). Relatedness was com-

pared using a z–test for two proportions. Only

observed heterozygosity was significantly different

between the two groups (P = 0.035), and we found

evidence for a recent population bottleneck at Tuttle

Creek Dam (P = 0.04; all other sampling locations,

P [ 0.05). With the exclusion of this site, we found

evidence for recent population expansion [within

locus (k) test, P = 0.04]. The interlocus (g) test for

population expansion was not significant (signifi-

cance assessed based on Table 1, Reich et al. 1999);

however, other studies have found similar results,

suggesting decreased power of the test when mutation

rates among loci are variable (i.e., data sets that, like

ours, contain dinucleotide, trinucleotide, and tetranu-

cleotide microsatellite loci; Donnelly et al. 2001).

Modest genetic differentiation was evident among

sites, with FST values ranging from 0.05 to 0.13

(average including Tuttle Creek Dam = 0.08 ± 0.01

SE; average excluding Tuttle Creek Dam = 0.05 ±

0.00 SE). All pairwise estimates except between Fort

Riley and Milford Dam were significantly [0 after

Bonferroni adjustment (Table 2). However, we found

no evidence to support a hypothesis of isolation by

distance (P = 0.08), and the AMOVA revealed that

the majority (86%) of the molecular variance

Fig. 2 Frequency distribution of distances moved by collared

lizards at the Konza Prairie Biological Station in the northern

Flint Hills, based on resightings of marked individuals

(n = 50)
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occurred within populations rather than among pop-

ulations. The principal coordinates analysis returned

six principal coordinates with eigenvalues [1, with

the first three explaining 59% of the variation in

genotypes. A plot of the first two coordinates

indicated that there was little structure, as demon-

strated by the large amount of overlap of individuals

from different sampling locations. However, some

separation occurred between Tuttle Creek Dam and

Konza Prairie along coordinate one (Fig. 3). Results

from Bayesian genetic clustering indicated that there

was little structure in our samples, with average log-

likelihoods nearly indistinguishable for K = 1, 2, or

3.

Estimated migration rates differed among sam-

pling locations (Table 3) and indicated gene flow had

occurred (average Nm per generation = 1.56 ± 0.47

SE). The highest number of migrants was predicted

from Tuttle Creek Dam to all other sites (average Nm

per generation = 3.76 ± 0.53 SE) and between Mil-

ford Dam and Fort Riley (average Nm per genera-

tion = 1.73 ± 0.10 SE). Results from spatial

autocorrelation analysis of samples from Konza

Prairie indicated that neither positive nor negative

spatial autocorrelation was evident in the four

smallest distance classes (\1 km). However, results

for spatial autocorrelation analysis at the 1-km

distance class demonstrated positive correlation in

distance class 1 (0–1 km) and negative correlation in

distance classes 4 and 5 (3–5 km) (Fig. 4).

Table 1 Average (±SE) allelic richness adjusted by sample

size (AR), effective number of alleles (Ne), average observed

and expected heterozygosity, inbreeding coefficient (FIS), and

relatedness (r) of four sampling locations for adult collared

lizards (sample sizes: Konza Prairie, n = 113; Fort Riley,

n = 14; Milford Dam, n = 14; and Tuttle Creek Dam, n = 20)

using eight microsatellite DNA loci

Population AR Ne HO HE FIS r

Konza Prairie 3.63 2.91 0.59 0.57 -0.03 0.11

Fort Riley 3.64 2.85 0.57 0.57 0.01 0.09

Milford Dam 3.49 2.65 0.58 0.56 -0.04 0.10

Tuttle Creek Dam 2.70 2.08 0.40 0.45 0.11 0.15

Average 3.37 2.62 0.54 0.54 0.01 0.11

SE 0.23 0.19 0.05 0.03 0.03 0.01

Table 2 Pairwise comparisons of genetic distance between

four sampling locations for adult collared lizards (for sample

sizes, see Table 1) based on eight microsatellite DNA loci

Population Konza Prairie Fort Riley Milford Dam

Konza Prairie –

Fort Riley 0.06* –

Milford Dam 0.05* 0.05 –

Tuttle Creek Dam 0.09* 0.09* 0.13*

Significant (P \ 0.05 after Bonferroni correction) differences

are indicated by asterisks

Fig. 3 Principle coordinates analysis conducted on DNA

samples from adult collared lizards indicating relative genetic

similarity of individuals across sample locations (for sample

sizes, see Table 1)

Table 3 Estimates of theta (4 Nl) and number of migrants per

generation (Nm = HM, M = mi/l) in program MIGRATE

Population H Nm

1, x 2, x 3, x 4, x

Konza Prairie 3.08 – 0.52 1.11 5.39

Fort Riley 3.10 0.50 – 1.98 4.12

Milford Dam 0.91 0.00 1.48 – 1.77

Tuttle Creek Dam 0.21 0.71 0.52 0.55 –

Estimates are based on DNA samples from adult collared

lizards at four sampling locations in northeastern Kansas using

eight microsatellites (for sample sizes, see Table 1)
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Discussion

This study tested the hypothesis that peripheral

populations within a species’ distribution have

reduced genetic variability and increased population

differentiation relative to core populations at the

center of the range (Eckert et al. 2008; but see Gaston

2003, Table 2). Additionally, because landscape

structure can variously influence the dispersal of

organisms, gene flow within or among populations,

and selection, consideration of landscape context can

provide insight into the different mechanisms influ-

encing population genetic structure throughout a

species’ range (Manel et al. 2003). For instance,

Johansson et al. (2005) found differences in common

frog (Rana temporaria) population genetic diversity

and differentiation across regions in response to

landscape context (i.e. agricultural intensity). Simi-

larly, Berry et al. (2005) found that grand skink

(Oligosoma grande) populations in exotic pasture-

land were more genetically structured and had less

genetic variation than populations in native tussock

grassland, although this study did not explore differ-

ences across regions. Our analysis allows for an

examination of historical influence on population

genetics, while also providing a basis for comparison

of population genetics among populations existing

within different landscape contexts in different

regions.

Indeed, we observed estimates of allelic diversity

and population structure for several collared lizard

populations sampled at the northern extent of the

distribution in the northern Flint Hills that

were intermediate between estimates for central

populations in Texas and peripheral populations in

the southwestern Ozarks (Hutchison 2003). We

identified two loci (Orig11 and N5) that were

monomorphic for all four sampling locations, and

thus lacked any genetic variation. Hutchison (2003)

found core-peripheral trends in monomorphism

among collared lizard populations, with peripheral

populations in the northeastern Ozarks having signif-

icantly more monomorphic loci than core populations

in central Texas, which had none. Because we found

evidence of recent population expansion at three of

our sites, low genetic diversity in those collared lizard

populations does not appear to be the result of a

recent population bottleneck. Rather, with the exclu-

sion of Tuttle Creek Dam, our results support the

hypothesis of a recent range expansion for collared

lizards (Hutchison et al. 1999). Hutchison and

Templeton (1999) postulated that collared lizard

populations, having only expanded into the Kansas

region during the Holocene (*7,000 ybp), have not

been present long enough to have attained drift-

migration equilibrium conditions (as demonstrated by

the presence of increased genetic isolation between

populations over greater distances; that is, isolation

by distance), and indeed, we found no evidence for

isolation by distance among our populations over

shorter distances.

Our results suggest that a moderate degree of

population structure may exist among our sample

sites (pairwise estimates of FST were significant

between all but two sites). However, we did not

observe the high levels of differentiation character-

istic of peripheral Missouri populations [southwest-

ern Ozarks (n = 28), average FST = 0.14 ± 0.03 SE;

northeastern Ozarks (n = 53), FST = 0.34 ± 0.03

SE] over the same distance (\40 km; Hutchison

and Templeton 1999). Our average FST (0.08 ± 0.01

SE with Tuttle Creek Dam, 0.05 ± 0.01 SE without)

appears intermediate between Missouri peripheral

and Texas central (n = 12, average FST = 0.02 ±

0.00 SE) populations (Hutchison and Templeton

1999).

This intermediate degree of population structure

appears to be at least partially influenced by contem-

porary landscape and demographic processes. Multiple

lines of evidence indicate that two of our study sites,

Fort Riley and Milford Dam, display high rates of gene

flow (nonsignificant pairwise FST and 1–2 migrants

exchanged per generation). We also found evidence

Fig. 4 Spatial autocorrelation analysis (with bootstrapped

95% error bars) conducted on collared lizard DNA samples

collected at Konza Prairie (n = 177) grouped into distance

classes of 1 km (i.e., distance class 1 indicates the correlation

between genetic and geographic distance for samples collected

between 0 and 1 km)
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that one sample site, Tuttle Creek Dam, has undergone

a recent population bottleneck. This bottleneck may

have resulted from a large flooding event in 1993,

which raised the lake level 19 m and necessitated

opening the dam’s spillway (producing a flow-rate of

1,700 m3/s at peak) that drowned and eroded rock

habitat (and presumably collared lizards within that

habitat) where we collected our samples. Such a rapid

decrease in population size would account for the

signature of low genetic diversity at this site, while the

high level of inbreeding and relatedness suggests that

little dispersal from other populations has yet occurred.

Although migration estimates for Tuttle Creek Dam

suggest that this site has indeed experienced high rates

of gene flow, low sample size for this site (number of

samples with complete genotype = 6), likely impaired

our ability to derive robust estimates of migration rates

or ancestry.

Interestingly, the evidence for moderate population

structure among populations seems, at first appearance,

contradictory to our measures of gene flow occurring

among the sites. In fact, populations that have been

founded by a small, genetically homogeneous group

during a range expansion are expected to have a high

degree of genetic similarity, which could be mistaken

for high rates of gene flow that are not actually

occurring (Ibrahim et al. 1996; Pogson et al. 2001;

Duvernell et al. 2008). This has been suggested for

species that have recently expanded into habitat that

was formerly unsuitable due to the presence of glaciers

(Larson et al. 1984; Highton 1995).

Indeed, several of our results suggest that gene

flow has been overestimated in our study. High levels

of gene flow were suggested by the AMOVA, which

indicated that the majority of molecular variance for

samples occurred within rather than among sampling

locations, and by MIGRATE-N, where the highest

gene flow is suggested between Milford Dam and

Fort Riley (excluding results for Tuttle Creek Dam,

as discussed above). In addition, the principal coor-

dinates analysis was unable to clearly partition

samples into groups based on sampling sites, and

we were unable to definitively assign individuals to

populations using Bayesian clustering analysis, which

suggested comparable likelihoods of one, two or

three populations. However, we also note that the

inability to assign individuals to unique populations

may be the result of using a small number of loci

(Pritchard et al. 2000).

Genetic divergence among populations may

remain low in the Flint Hills region due to the

potential use of rock outcrops and gravel roads as

‘‘dispersal avenues’’ through open grassland, which

has been maintained historically—as at present—by

fire and grazing, thus preventing the expansion of

closed-canopy forest (Freeman 1998; Hartnett and

Fay 1998), and future availability of fine-scale spatial

data coverages, which would permit the mapping of

individual limestone outcrops, would allow for a

more rigorous analysis of the effect of landscape

context at a local scale, permitting a test of this

hypothesis. In comparison, populations of collared

lizards in other regions, such as at the eastern

periphery of their range in Missouri, occupy rock

habitat within an oak-hickory forest matrix, where

dispersal and gene flow are highly restricted over

short distances (as little as 50 m apart; Hutchison and

Templeton 1999; Templeton et al. 2001; Brisson

et al. 2003). Collared lizards thus do not appear to

disperse far in the context of a forested matrix.

Other rock-dwelling species appear to face similar

obstacles to dispersal. For example, Levy et al.

(2010) found that ornate dragon lizard (Ctenophorus

ornatus) populations inhabiting rock outcrops sur-

rounded by cleared agricultural land rather than

native vegetation exhibited reduced genetic variation

and increased genetic differentiation. Likewise, New

Zealand grand skinks (O. grande; Whitaker 1996;

Berry et al. 2005), Cunningham’s skink (Egernia

cunninghami; Stow et al. 2001) and collared pikas

(Ochotona collaris; Franken and Hik 2004) are all

rock-dwelling species whose dispersal is affected

differently by the type of matrix surrounding habitat

patches.

Although we did not directly observe lizards using

outcrops for dispersal, we were able to examine gene

flow over fine spatial scales (0–1 km) at Konza

Prairie, a site with ample rock habitat, using spatial

autocorrelation analysis. We detected significant

negative correlations at greater distances (3–5 km),

which may reflect a spatial limit to population

admixture at this site. These results are consistent

with our observations of movements by marked

lizards at the Konza Prairie (100% of recorded

movements B1,000 m, with 74% B100 m; Fig. 2).

Similar within-population movements have also been

reported for central populations in Oklahoma, with

lizards dispersing *200 m but not more than 350 m
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among rock ledges, with no evidence of population

genetic substructure (Hranitz and Baird 2000). We

also observed what appears to be a single long-

distance dispersal event (1,000 m) by a male having

reached sexual maturity, the point at which collared

lizards most often disperse (Fitch 1956).

We are able to draw several conclusions based on

our results. First, the genetic diversity and population

genetic structure of collared lizards in the Kansas

Flint Hills offer partial support for the core-peripheral

hypothesis, as reported for other taxa (Eckert et al.

2008), and this ‘‘edge’’ effect is most likely a result of

founder effects coupled with population expansion

into habitat that was historically unsuitable owing to

climate change and associated shifts in the biome

(i.e., the last glacial retreat started about 12,000 ybp).

Second, even though dispersal and gene flow appear

to occur readily among rock habitat patches within

sites, particularly in comparison to habitat patches

within a different (forested) landscape context in

other peripheral regions, gene flow does not appear to

occur widely enough among sites to mitigate detect-

able population divergence.

Genetic diversity and population differentiation

among our sampling sites may increase over time,

especially due to changes in grassland management

practices (e.g., forest expansion as a result of fire

suppression) and increased exurban development,

which can fragment grassland habitat and result in

decreased connectivity and gene flow among popu-

lations. We conclude that while our results are

generally consistent with expected trends in genetic

diversity and differentiation for core vs. peripheral

populations, not all peripheral populations at the

margins of a species’ range will necessarily exhibit

the same level of genetic diversity or degree of

genetic differentiation, an important consideration for

the development of future studies of core-peripheral

trends in population genetics (Eckert et al. 2008) and

for setting conservation targets (Lesica and Allendorf

1995). Among different peripheral regions, local

population differences and the degree of genetic

differentiation among populations may also be influ-

enced by landscape context (e.g., whether the pop-

ulation is embedded within tallgrass prairie vs. forest

matrix, type of land use or land management, degree

of fragmentation). More attention, then, should be

given to landscape context, including landscape

history, in evaluating current patterns of genetic

structure within and among populations.
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